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7Th1s paper examines the cyclotron maser &1 ;ey-kor

general magnetic harmonic number transverse electric (TE)
and transverse magnetic (TM) waveguide modes in a conducting

cylinder of radius R . The analysis is carried out for a
S Sex <
hollow electron beam (radius R ) propagating parallel to a
?s-—S wly f

uniform axial magnetic fieldeﬁﬁvczi_ It is assumed that
v/yd“*1, where v is Budker's parametgr and Yomc is the
electron energy in a frame of fg}erenco moving with the beam
axial velocity Bbvéz.g’One of the most important features

of the analysis is that the instability growth rate for (
magnetic harmonic numbers s=2,3,... is comparable to the
growth rate of the fundamental (s=1) mode, particularly

for moderate electron energy‘+#6={+-&fyg)]J230.ﬁ1?/‘Moreover,

it is shown that the instability growth rate can be maximized f"\v‘:«kq

by appropriate choice of the geometric parameter RO/Rc'
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I. INTRODUCT1ON

One of the most basic instabilities that characterizes a hollow

L with slow rotational equilibrium is the electron cyclotron

e 2-10 . 4ich
maser instability. In recent experiments, ’

electron beam
the cyclotron maser
instability has been investigated for magnetic harmonic number

s>2, with particular emphasis on the implications for intense microwave
generation. Previous theoretical analyses of this instability have

been carried out for a non-self-consistent equilibrium slab configuration.
Strictly speaking, a more accurate theoretical model of microwave
generation by the cyclotron maser instability, including a determination

of the optimum value of the beam radius R,, requires a linear stability

0’
analysis for perturbations about a self-consistent, cylindrical, Vlasov
equilibrium.
: ; 10

This paper develops a self-consistent theory of the cyclotron
maser instability for azimuthally symmetric perturbations with
magnetic harmonic number s>1. The present work extends the previous

. 10 : i

self-consistent theory of the cyclotron maser instability, developed
by the authors for s=1, to higher values of magnetic harmonic number
(siZ). The analysis is carried out within the framework of the Vlasov-
Maxwell equations for an infinitely long electron beam propagating

e .

parallel to a uniform magnetic field B wEs

e with axial velocity V
Ovz
We assume that the beam is very tenuous, so that the perturbed field
can be approximated by the vacuum waveguide fields (v/yo«xl, where v
is Budker's parameter). Equilibrium and stability properties are

calculated for the specific choice of equilibrium electron distribution

function in which all electrons have the same value of canonical

angular momentum (PO) and the same value of energy (yomcz) in a frame

6,8




¢ [Eq. (5)]. Equilibrium

of reference moving with axial velocity g

b

properties are examined in Scc. TI. An important feature of the analysis
is that the equilibrium distribution function in Eq. (5) corresponds
to a hollow density profile with sharp radial boundaries [Eq. (13)].
The formal stability analysis for azimuthally symmetric electro-
magnetic perturbations (8/96=0) is carried out in Sec. III. Making
use of the fact that the electron trajectories are circular, the per-
turbed distribution function is calculated for arbitrary magnetic
harmonic numbers [Eqs. (38) and (39)]. Equations (38) and (39),
when combined with Eqs. (16), (22), (23), and (24), constitute one
of the main results of this paper and can be used to investigate
stability properties for a broad range of system parameters. In
this regard, we emphasize that Eqs. (38) and (39) are derived with no
a priori assumption that the electron motion in the beam frame is
much smaller than the speed of light in vacuo, i.e., that Bé'(l—]/yg)(<1.
In Sec. IV, a detailed analytic investigation of the cyclotron
maser instability is carried out for the TE and TM waveguide modes,
assuming Sé<<l. Introducing the normalized Doppler shifted eigenfrequency

[Eq. (49)]
XS=[Yb(w-ka)—swC]/wC .
the dispersion relation can be expressed as [Egqs. (48) and (51)]

3 E 2 E . X
Xs—anxS+80stn/(2s+1)—o, TE mode,

3 M 2 M
%) -Q]nxf-eooln/%o , TM mode,

241/2

where yb=l/(1-8b) % mc=eB0/y0mc is the electron cyclotron frequency

in a frame of reference moving with axial velocity Bbcéz, k is the axial




wavenumber, w is the complex eigenfrequency, an (QTn) is the coupling

coefficient for the TE (TM) mode [Eqs. (50) and (52)], and s=1, 2, 3...

denotes the magnetic harmonic number. Evidently, for given s which

satisfies a ,< for the TM mode, the

2l en <6

for the TE mode and a

sl "On

maximum growth rate occurs at a value of RO/RC given by [Eq. (53)]

o /o, , TE mode ,
RO/RC = s’ "On
asl/BOn’ TM mode ,

where a is the first zero of J;(y)=0, and a

s1 and BOn are the nth

On
zeroes of Jl(y)=0 and Jo(y)=0, respectively.

A detailed numerical analysis of the dispersion relations in Eqgs.
(48) and (51) is presented in Sec. V, where stability properties are
investigated for a broad range of system parameters. It is found
that the growth rate of perturbations with s>2 increases rapidly
when the value of BO is increased. We therefore conclude, for moderate

or high values of @ that magnetic harmonic perturbations with s>2

O,
are also important unstable modes for intense microwave generation by

the cyclotron maser instability.

finally, we note that Eqs. (53) and (30) can be combined to determine

the conditions for maximum growth rate and hence optimum conditions i
for intense microwave generation by the cyclotron maser instability.

In particular, the microwave frequency WSW Yy produced by the electron

beam can be tuned by the matching condition Rc=a0nc/smc in Eq. (30).

Moreover, selecting RO/RC=a maximizes the growth rate of the TE

/
s1’ “on

mode perturbation with magnetic harmonic number s (Sec. IV and V).

&
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IT. EQUILIBRIUM PROPERTIES AND BAS1C ASSUMPTIONS

As illustrated in Fig. 1, the equilibrium configuration consists
of a slowly rotating hollow electron beam that propagates parallel to

a uniform applied magnetic field B with mean axial velocity Bbcéz.

e
0%z

The mean radius of the electron beam is denoted by R, and a grounded

0
cylindrical conducting wall is located at radius r=RC. The applied
magnetic field provides radial confinement of the electrons, and the
radial thickness of the electron beam is denoted by 2a. As shown in
Fig. 1, we introduce a cylindrical polar coordinate system (r,0,z)
with the z-axis coinciding with the axis of symmetry; r is the radial
distance from the z-axis, and 6 is the polar angle in a plane perpendicular
to the z-axis.

The following are the main assumptions pertaining to the present 5
analysis:

(a) Equilibrium properties are independent of z (3/3z=0) and
azimuthally symmetric (3/36=0) about the z-axis.

(b) The mean canonical angular momentum of the electrons is

negative, which corresponds to a slow rotational equilibrium.l’10
(¢) It is further assumed that
V/Y0<<<l (1)
2 2 ¥
where v=Nee /mc” is Budker's parameter,
Rc 0
N =27 f dr r ne(r) (2)

0
is the number of electrons per unit axial length, ng(r) is the

equilibrium electron density, ¢ is the speed of light in vacuo,

-e and m are the charge and rest mass, respectively, of an electron,




6

and yomc2 is the electron energy in a frame of reference moving with
the mean axial velocity vbéz of the electron beam. The inequality
in Eq. (1) indicates that the beam is very tenuous, so that the
perturbed fields can be approximated by the vacuum waveguide fields.10
Consistent with the low-density assumption in Eq. (1), we also neglect
the influence of the small equilibrium self-electric and self-magnetic
fields that are produced by the lack of equilibrium charge and current
neutralization.

For azimuthally symmetric equilibria with 3/36=0=3/3z, there are

three single-particle constants of the motion. These are the total

energy H,

H=ymc2=(mzc4+c282)l/2 : (3)

the canonical angular momentum Pe,
P8=r[p9—(e/2c)rB0] s (4)

and the axial canonical momentum Pz=pz. In Eqs. (3) and (4), lower
case p denotes mechanical momentum and the equilibrium self-fields
have been neglected in comparison with the external magnetic field
BOéz [see Eq. (1)]. Any distribution function that is a function
only of the single-particle constants of the motion satisfies the

steady-state Vlasov equation (3/3t=0). For present purposes,

we assume an equilibrium distribution function of the form,l’lo
R
0 _ 8%
fe(H’PG’Pz) o 2 6(U)6(P9_PO) ) (5)
ZWmYbYO

where n0=const. is the electron density at r=R0, P0=—(e/2c)(Ré—az)BO=const

is the canonical angular momentum of the electrons,

Z
U—H—Bbcpz-yomc /Yb (6)

A e e A 1




is an effective energy variable, ﬁh=vonsl. is defined by ﬁb=Vb/C=

2 /9
(y;-l)l"/yb, and 0 and Hl are constants. It is straightforward
)

to show that the axial velocity profile associated with Eq. (5) is
uniform over the beam cross section.

Several pertinent equilibrium properties can be deduced for
the class of electron beam equilibria described by Eq. (5). For
this purpose, it is useful to transform the energy variable U
defined in Eq. (6) from momentum variables (pr.pe,pz) appropriate
to the laboratory frame to momentum variables (p;,pé,p;) appropriate
to a frame of reference moving with velocity Bbcéz, where éz is a
1,10

unit vector in the z-direction. The relevant transformation

is given by

5l il il [ uk ' '
Pr-Pr. PG pq. PZ Yb(PZ+Y meC) [ Yb(Y +Bbp2/mc) ’ (7)

and
B ey g (8)
Yy 0

202

where Y=(l+82/m20 ) e 1/2.

2
and y'=(l+£'/m c ) After some straight-—
forward algebra, we find

n. R, (y'+B8, p'/mc)
fg(H’Pe~Pz)d3P _ .00 bPz

g 2 5.2 3 4
§(y'me Ygme )6(Pe Po)d p's

(9
where d3p=dprdpedpz and d3p'=dp;dpédp;. It is evident from Eq. (9)

2rmy v

that Yomc2 can be identified with the total electron energy in

a frame of reference moving with axial velocity Bbc.

The energy variable Y'mc2 in Eq. (9) can be expressed as

2~2

y'mc2=c(m2c2+m &Cg2+p12)1/2 (10)

where use has been made of P9=PO’ g is defined by

e




g(r) =

%
E

[o+(o*+a”) /2R ] (11)

~

wc=eBO/mc is the nonrelativistic electron cyclotron frequency,

and p12=p;2+p;2. In Eq. (11) p is defined by

p=r—R0 s (12)
Substituting Eq. (11) into Eq. (9), and representing
21 oo
fd p'=fw dpé[ daf dpipi
-0 0O ‘70
it is straightforward to show that the electron density can be
expressed as
0 3.0 Sz
ne(r)=Jd pf (H,P,,P ) = n, 7+ ®@a-07) , (13)
where
Lo 2 o8
a=(y4-1) c/wC (14)

is the half-thickness of the beam, and ®(x) is the Heaviside step

function defined by

The self-consistent electron density profile is illustrated in Kigs 2.
Evidently, the electron beam equilibrium described by Eq. (5) has
sharp radial boundaries. Additional equilibrium properties associated

with the distribution function in Eq. (5) are discussed in Refs. 1

and 10.




ITI. LINEARIZED VLASOV-MAXWELL EQUATIONS FOR TENUOUS BEAM

In this section, we make use of the lincarized Vlasov-Maxwell
equations to investigate stability properties for azimuthally symmetric
perturbations (3/36=0) about a tenuous, hollow-beam equilibrium
described by Eq. (5). We adopt a normal-mode approach in which all

perturbations are assumed to vary with time and z according to
5w(§,t)=@(r)exp{i(kz-wt)} s

where Imw>0. Here w is the complex eigenfrequency and k is the axial
wavenumber. The Maxwell equations for the perturbed electric and magnetic

field amplitudes can be expressed as

vEG=1 ¢ RGO
(15)
UxB(x) = é—TLJ(x)-l "-ﬁ(x)
VALY c A c v ?
where
2 3~
g(§)=—efd pyf, Gap) (16)
is the perturbed current density. 1In Eq. (16),
o 0 v'xﬁ(é')
. cttdieey S RE 2 0
fe(é,g)—ef_m dtexpf 1wr}{g(§ ) + 5 SR' fe (17)

is the perturbed distribution function, t=t'-t, and the particle
. . Vet ' ' . ' Vigrr t ' Vs e ¥ -
trajectories x (t') and D (t') satisfy dx /dt =y' and dp /dt'= ey XBOEZ/C’
with "initial" conditions §'(t'=t)=x and v'(t'=t)=vy.
N v Y
In the tenuous beam limit consistent with Eq. (1), the perturbed
fields can be approximated by the vacuum waveguide fields.10

In this context, the pre-ent stability analysis utilizes the vacuum

transverse electric (TE) and transverse magnetic (TM) waveguide modes

A




as a convenient basis to represent a general electromagnetic field

perturbation within a cylindrical waveguide. Making use of Eq. (15)
and neglecting the perturbed current density, the vacuum waveguide modes

can be expressed as

ﬁz(r)=J r/R )==i(c/ur) [3(rky)/or]=i[a(xB ) [or]/kr (18)

O(GOn

for the TE mode and
ﬁz(r)=J0(30nr/RC)=i(c/mr)[a(rﬁe)/ar]=i[a(rﬁr)/arl/kr : (19)

for the TM mode. In Egqs. (18) and (19), Jg(x) is the Bessel function

of first kind of order %, and %0 and BOn are the nth roots of J )=0

1(%0n
and JO(BOn)=O, respectively. Moreover, without loss of generality,
the normalization amplitudes for ﬁz(r=0) and ﬁz(r=0) have been set
equal to unity in Eqs. (18) and (19). After a simple algebraic

manipulation of Egqs. (15), (18), and (19), it is straightforward

to show tiat

wz 2 aOn =
(;2-— k™ - ;§~ Jl(aonr/Rc)=—An(aon/Rcc)Je(r) 5 (20)
c

for the TE mode and
2

w2 2 BOn A o
:f - k° - , JO(Bonr/RC)=4ﬂik[pe(r)—(m/kc )Jz(r)] (21)

for the TM mode. In Eq. (21), the perturbed charge density Be(r) is

defined by
A 3 4
oe<r)——efd pE,(r,p) - (22)

Multiplying Eqs. (20) and (21) by rJl(aonr/Rc) and rJO(bOnr/RC),

respectively, and integrating from r=0 to r=RC, we obtain
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2
2 a 8nma. [R.c R
w 2 On On' ¢ e a
(-—2- - k™ - -—.ﬁ> N j dr J](aOnr/Rc)J“(r) (23)

2 B ; R
<_“’_-k2——9—g>=_—81}l(....__JCdrrJ(8 r/R )6 _(r) - =
2 % 2 0""0On c e 2
[R 3, €8y 01" 10 ke
0] (24)

for the TM mode. For present purposes it is also assumed that
IQS,=]w—kvb~swc/7b}<<wc/yb (25)

where Qs=w-kvb—smc/Yb is the Doppler shifted frequency, wc=eB0/YOmc
is the electron cyclotron frequency in a frame of reference moving
with axial velocity Vb,.and s=1,2,3... denotes the magnetic harmonic
number.

To lowest order, the eigenfrequency w and axial wavenumber k
are obtained from the simultaneous solution of the vacuum waveguide
mode dispersion relation,

2 2
) aon/RC , TE mode ,

c BOn/Rc , TM mode ,

NJEN

and the condition for cyclotron resonance
w:kvb+swc/yb E (27)

Moreover, to maximize the growth rate and efficiency of microwave
generating it is required that the group velocity of the vacuum
waveguide mode in Eq. (26) be approximately equal to the beam

i)
velocity, . i.e.,

V = —= —— >~ |V ., (28)

:Iz(r)]




i 12

Solving Eqs. (27) and (28) for the characteristic frequency and axial wave-

number (w,k)=(w0,k0), we find (Fig. 3)

o~ BTy
(29)
k0=swcyb6b/c " .
20=11t/2 . okl A
where Yb=(1-6b) . For maximum growth, it is also required that
' (wo,ko) solve Eq. (26) in leading order. Therefore, for maximum
g
; growth, we find that Rc should satisfy
ay c/sw , TE mode |,
RC % On (& (30)
8o c/sw_, TM mode ,
n c

for intense microwave generation at frequency WSW Yy - Because of the
discrete nature of %00’ BOn’ and s, we also conclude that the stability
analysis can be carried out separately for the TE and TM modes.

The perturbed distribution function is calculated for the case of
a self-consistent Vlasov equilibrium in which all electrons have the
same canonical angular momentum and the same total energy in a frame of

reference moving with axial velocity Vbéz [Egs. (5) and (9)]. To

simplify the right-hand side of Eq. (17), we make use of Egs. (4)

and (6), and the identities BU/33=X-Vb%z and aPe/pr=rée, where ée

is a unit vector in the 6-direction. The TE mode portion of the

: ; ; ; 10
perturbed distribution function can then be expressed as

0

' ' e
Ee(r v

kV % of
) Botevg 57

0
%E(r,g)=eJ_m drexp{i[(kpz/vm)-w]T} {(l P

w

(31)

0
kp v! of
] 4 - 1 — 19 |l e
=k ((l 5 Ymm) Ee(r ) c Bz(r )] 3P } >

6

which is required to calculate the perturbed azimuthal current

density 3e(r) in Eq. (23). Similarly, the TM portion of the perturbed ‘
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distribution function is given bylO

Bfo

0 ~ ~
fg(r,g)=e Eﬁg f ¢ dTexp{i[(kpz/ym)—mli}{[Er(r')-BbBO(r')]V;
& (32)
+ ﬁz(r’) [(pz/vm)—Vb]} >

which is required to calculate the perturbed charge and axial current
densities in Eq. (24). 1In obtaining Eqs. (31) and (32), use has been

made of the axial orbit
'=z+(p2/m) (t'-t)

The transverse (radial and azimuthal) motion of a typical electron

is illustrated in Fig. 4. (The dotted circle is the electron orbit
in a plane perpendicular to the z-axis.) The radial distance of the
electron from the z-axis at times t'=t and t'=t' are denoted by r and
r', respectively. The point C is the gyrocenter of the electron
trajectory. The angular coordinates ¢ and ¢' are the perpendicular

velocity-space polar angles at times t'=t and t'=t', and are related by
¢'=¢+(wC/Y)(t'—t) .

The transverse velocities at times t'=t and t'=t' are denoted,

respectively, by Xt and X%’ and the corresponding speeds are defined by
Z
\l

2o01/2 ’+v'2 1/2.

s i
vT—(vr+ve) and vT—(vr 6 )

To simplify the present analysis, we also assume that

v/vy<<(Byuck /)%, (33)

where BO=(1—]/YS)1/2' Equation (33) is easily satisfied in parameter

regimes of experimental int:erest:.z_5 Within the context of Eq. (33),

it is valid for s<3 to neglect the terms proportional to afg/BPe in
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Eq. (31), since the corrections associated with these terms are of order
(v/YO)(c/BOwCRC)Z (<<1) or smaller. Substituting Eq. (18) into
Eq. (31), we find that the perturbed TE mode distribution function

can be approximated by

i P 3f2 0
S (kv - sﬁ—-f_m drexp{i[(kp /ym)-w]t}

ieR

2E
f (rp) = o
(34)

xsin(¢'—0‘)Jl(a0nr'/Rc) '

where pT=YmvT=(pi+p§)1/2, and use has been made of vé=stin(¢'-e').

Making use of Eq. (28) and substituting Eq. (19) into Eq. (32), we

obtain

afO

0
AM h ™ _E ) — -
fe(r.g)-e[(pz/ym) Vb] 50 J_m dTexp{ll(kPZ/Ym) w]T}JO(BOnr /Rc)

(35)
for the perturbed TM mode distribution function.

The Bessel function summation theorem for the triangle OAB

in Fig. 4 can be expressed asll

JQ+S.(aOnr/RC)JS.(aOnx/RC)

e~ 8

exp{iﬁ(e'-e)}Jl(aonr'/Rc)=S'

-0

(36)

xexp{is'(ﬂ+9-¢—&cr/2y)} .
Similarly, for the triangle ABC, we can represent

exp {1 %} (n-&cr/y)}Js.(aOnA/Rc)
(37)

o

B i 8. D
33 On'T ( On T> o
=) Js+s'(m& R ) s\ Do R exp{lsch/y},
2 [ 2/ 24 e C

where s=1,2,3... denotes the magnetic harmonic number. Making use of

(28), (36), and (37), and carrying out the time integration

Eqs.
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in Eq. (34), it is straightforward to show, for a given harmonic
component s, that the perturbed TE mode distribution function can be approx-

imated by

01 <a0in)_ 3 <a0in>
- 3 o A e A
eRC (w kvb)pT dfe s-1 mmCRc s+1 meRC

%Zq(r’g) =3 .c 2y, m U y' (w=-kV, )-sd /
3 On b b’ "%y

(38)
P

o
xz'(i)S'Js,(aonr/RC)JS+S, (E%Sﬁf) exp{is' (6-¢)} ,
where use has been made of the Lorentz transformation in Eq. (7).
In obtaining Eq. (38), we have neglected the mode coupling between
different values of s, which is consistent with Eq. (25). In a
similar manner, the perturbed TM mode distribution function for harmonic

component s can be approximated by

v 0
EM O ie pz(afe/BU) (BOin>
es 7'k ng Y'(w—ka)—s&C/Yb s m(BCRC
(39)
it B'Oin
<L %0, B /R I, () explis' (0-0))
st (e

Equations (38) and (39), when combined with Eqs. (16), (22),
(23), and (24), constitute one of the main results of this paper
and can be used to investigate stability properties for a broad range
of system parameters. In this regard, we emphasize that Eqs. (38)
and (39) have been derived with no a priori assumption that 855(1-1/y5)<<1
or that a<<R,. However, in the limiting case where B§<<1, Eqs. (38)

0
and (39) can be simplified considerably (Sec. 1IV).
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IV. CYCLOTRON MASER INSTABILITY FOR Bé(“l

In this section, simplified expressions are obtained for the
perturbed distribution function in Egs. (38) and (39), and the
results are used to derive the dispersion relation for several different
values of magnetic harmonic numbers. The present analysis assumes
that the electron motion in a frame of reference moving with axial

velocity Bbc is much smaller than speed of light in vacuo, i.e., that

2=1_1/Y(2)<<1 : (40)

%0

Equation (40) can be used to truncate the summations over s' in
Eqs. (38) and (39), keeping only leading terms of order Bg.

7 1
Defining Qin and an to be the coupling coefficients between the

vacuum TE and TM waveguide modes and the cyclotron resonance mode

. e M E 2
w=kV +swc/yb, it is found that stn/QS 580/4 [see Eqs. (50) and (52)].

b
In this context (Bg<<1), the instability growth rate is largest

ol

for the TE mode.

The perturbed distribution function in Egs. (38) and (39) can
be further simplified by making use of the symmetry properties of
the equilibrium distribution function fz(U,Pe). Since the variable
U is an even function of Py [Eq. (8)], it follows from Egs. (16)

and (22) that any term in Eqs. (38) and (39) that is an odd function 1

of P, will give zero when the integration over P, is carried out.
Therefore, when evaluating fes(r,g), we simply omit terms proportional
to odd functions of P,- To evaluate the momentum integral in Eqs. (16)

and (22), use is made of Eq. (10). After some straightforward algebra,

we find
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agQs,
i af /U 3 noR, " T
F'p = e = e foe | (] R Y80l
b ¢ b YAmb T s 0
(0 (e
" Bg(“’kvb) 2 2
+(1-2) s+a)| - 55— (a"-0)} ,
R 202
0 a
S
p2 Bfo/aU p'2 BfO/BU
fd3p T e A3 b JdBP' z e
1 Vs T
¥ ot il Y=slh. i Yy Y v (e-kVy) ch/Yb
b e 'b
L Dl
ngRom (g bo(a -g )(w—kvb) 9 2
Fr T e 72 e Sy
Yo ‘s 2a”q
4 0 N2 0 1
! Jd3p EE Bfe/BU ¥ f 3, (prpz) Bfe/BL
' — Qi T fhesT K] T o IR
Y ¥ (w-kVp) S“’c/Yb Ty Y ' (w-kV,) swC/Yb
(41)
2L 2 2,002
SugRo 8, 9 g (1  Eplo-kV ) (=g /a7) 2 2
S Sl e e 5 ®(a"-p") ,
Yo s QQS

where the Doppler shifted frequency QS is defined in Eq. (25), and
g(r) is defined in Eq. (11).

We first investigate stability properties for the TE mode pertur-
bation with fundamental magnetic harmonic number (s=1). From Eq. (38),

the perturbed distribution function is approximated by

eR  w-kV p 3£0/2U
£, = - 2 3 (o, t/R) —rrel
el "k GonC 2me 1" 0n c

kv T, (52)

where p9=stin(¢—0)=m&Cg. The perturbed azimuthal current density
is evaluated by substituting Eq. (42) into Eq. (16) and making use
of Eq. (41). After some algebra, we obtain

2
n.e RORC(w—ka)

E 0 2 T a
Jxa Gy = = J. (s r/R g g——— ( 1+ —) 6(p-a)
61 ZYOmeaoncr 1> 0n c an ( RO)
j (43)
B~ (w-kV, )
+ (1 - ﬁt) 6(o+a)] - _S%TTT_JE_ 0(a2-02)€ .
0 a Ql
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The radial integration on the right-hand side of Eq. (23) can be
carried out by Taylor expanding the integrand about r=R0, and keeping
leading terms of order p2=(r—R0)2. The Taylor expansion of the Bessel
functions provides a good approximation when the functions are slowly
varying over the minor cross section of the beam. The number of
electrons per unit axial length of the beam (Ne) can be determined

by substituting Eq. (13) into Eq. (2), which gives Ne=4nan0RO.

Eliminating n, in favor of Ne and carrying out some straightforward

0

algebraic manipulation, we obtain the s=1 TE mode dispersion relation

2 2
& L e ey [Jl(“OnRo/Rc)) [“”kvb
ToYp (Redplagy) w=kVy~w, [vy

(44)
2 2
b Bo(w—kvb)

3(w-ka—wC/Yb)2
where use has been made of v=Nee2/mc2. The dispersion relation in
Eq. (44) is identical to the result obtained previously by Uhm et al.10
for s=1.
In a similar manner, we have derived the dispersion relation
for several values of magnetic harmonic number s. The following

equations summarize the main analytic results obtained for 832(1—1/Y§)<<1:

(a) The TM mode dispersion relation for s=1 is given by

2 2 2
EE . k2 & BOn it 2\)80 Jl(BOnRO/Rc) w
et Ri 3yoys K93 Bon’ w=kVy -0 /v,

2 (45)
Bow(w—ka)

2
S(w-ka—mc/yb)

where use has been made of the recursion formula Jé—d(JOJl)/dx—

2
JOJl/x—Jl.

|
{
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(b) The TE mode dispersion relation for s=2 is given by
2 2 2
2 3 ( 2 )
T R L ] N A
c2 Ri }YOYb IJ‘(“]2(01011) w—ka—ch/Yb
2 2 (46)
o bt 0
e i R p
J(u—ka—ZmC/Yb)
where use has been made of
3%-4(J.3,) Jdx=-J, 3., [x=J°
Whita e i
f (¢c) The TE mode dispersion relation for s=3 is given by
2 4 2
23 i kz | %0n E 81v80 J3(aOnRO/RC) w—ka
2 = -
cz RC ZOYOYb RCJZ(uOn) . kvb 3wc/Yb
(47)

2 2
Bo(w—kvb)

7(m—ka—3wc/Yb)2

where use has been made of
Foed? =380, 1) [du=23. 3 b @0 ) [d= 43I, 3 ) fax] Ix
3 F JiR) a2 173 -3 2

Substituting Eq. (30) into Eqs. (44), (46), and (47), and making

use of w2kvb+swC/Yb, we obtain the approximate TE mode dispersion

relation

: B S O )
Xs_anxs+BOstn/(zs+l) =0 (48)

for s=1,2,3. 1In Eq. (48), the normalized Doppler-shifted eigenfrequency

Xg is defined by

XS=[Yb(w—ka)—swc]/wC g (49)

and the coupling coefficients between the TE vacuum waveguide mode

and the electron cyclotron resonance mode are defined by

M—_—_w e s
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Qin(RO/Rc)=V[Jl(GOnRO/RC)/JZ(GOn)]Z/YOYngn 2

E PR 2 2
an(RO/RC)—lﬁvBO[JZ(GOURO/RC)/Jz(aOn)] /3Y0Yba0n > (50)
Q& (R /R )=9v(38)* (3. (o, R /R )/3. (o, )12/40y v, o>
3n° 0" "¢ 0 3 7°0n 0" ¢ 2" 70n Y0Yb%n -
Similarly, for the s=1 TM mode, we obtain
3 M 2 M
By 0% Ty (570, £ty
where the coupling coefficient QTn is defined by
Q' (R /R )=vB2[J. (8. R /R )/J, (8, )1%/3v.v, 8 (52)
In* 0 S’ re 1 om0 e V1 o Y0"b"0n -

As mentioned at the beginning of this section, it is evident
from Eqs. (50) and (52) that the TM mode coupling coefficient
QTn is much less than the TE mode coupling coefficient an.
Therefore, we conclude that the TE mode is the dominant unstable pertur-

: 2 g g
bation for B.<<1. However, when the transverse electron motion is

0

relativistic (8041), the TM mode perturbation is equally important.
A careful examination of Egs. (50) and (52) shows that the coupling
coefficient between the vacuum waveguide mode and the electron

cyclotron resonance mode (w=kV +swc/yb) is a maximum whenever

b

' - ' =
JS(aOnRO/RC) 0 for the TE mode, and JS(BOnRO/Rc) 0 for the TM mode.

Here the prime (') denotes dJS(x)/dx. In this context, we find that
the maximum growth rate for magnetic harmonic number s occurs for a

value of RO/RC given by

a /o

sl TE mode |,

Ry/R, = Vi1 (53)
/8 TM mode ,

%s1/Pon *

where gy is the first root of J;(asl)=0. Equation (53) is valid only
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when a . <a for the TE mode, and a <P for the ™ mode. For a . >a
sl "On sl "On sl “On
'E >R 4 b > axi y ¢ » S ~] .
(TE) or  q 'On (TM), the maximum growth rate occurs for RO/Rv 1
. It should also be noted from Eq. (50) that perturbations with higher
magnetic harmonic number become dominant when the transverse electron
speed approaches c (BO+1). In the following section, we make use of

Eqs. (48)-(52) to investigate detailed stability properties for a

broad parameter range of experimental interest.
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V. NUMERICAL ANALYSIS OF STABILITY PROPERTIES

The growth rate wi=1mw and real oscillation frequency wr=Rem
have been calculated numerically from Eqs. (48) and (51) for a broad
range of system parameters, RO/RC’ n, S, SO’ and eb. Since the
electron beam is hollow (R0>a) and is located inside a conducting
waveguide of radius RC (R0<Rc—a), the allowable range of RO/RC is

restricted to

(sBO/aOn)<(RO/RC)<l—sBO/u0n, TE mode ,
(54)
(SBO/BOH)<(RO/RC)<1—SBO/BOn, TM mode ,

where use has been made of Eq. (30). Therefore, in Figs. 5-7, the
plots are presented only for values of RO/RC satisfying Eq. (54).

Shown in Fig. 5 are plots of (a) the normalized growth rate
wai/wC and (b) the normalized Doppler-shifted real frequency
Re(bel/mC)=[Yb(wr—kvb)—wc]/wc versus RO/RC obtained from Eq. (48)

(TE mode) for s=1, v=0.001, 80=0.&, Bb=0.286, and severa' values of n.
Several features are noteworthy from Fig. 5. First, the maximum

growth rate decreases as the radial harmonic number n is increased.

As evident from Eqs. (50) and (52), this feature represents a general
tendency for both TE and TM perturbations, for all magnetic harmonic
numbers s. Second, the number of zeroes of wy (where the growth rate
vanishes) increases as n is increased. Moreover, the maximum value of
the growth rate is also a decreasing function of RO/RC' Third, the plot
of the Doppler-shifted real frequency versus RO/RC has the same general
form as the plot of the growth rate versus RO/Rc' However, the

growth rate is about 1.5 times as large as the Doppler-shifted

real frequency. This feature is a result of the fact that the contribu-
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tion of the second term in Eq. (48) is negligible in comparison with
the third term, for BO=0.4. Fourth, the maximum growth rate occurs at
a value of RO/RC corresponding to the maximum value of the perturbed
azimuthal electric field [Egs. (18) and (44)].

Shown in Fig. 6 are plots of the normalized growth rate wai/wc
versus RO/RC obtained from Eq. (51) (TM mode) for parameters identical
to Fig. 5. Comparing Fig. 6 with Fig. 5(a), it is evident that the TE
mode is more unstable than the TM mode. For example, for n=1, the
maximum TE mode growth rate is wi:0.0143 mc/yb, whereas the maximum
TM mode growth rate is wizo.OOSS mc/yb. In this context, we conclude
that the TE mode is a more effective means for exciting microwave
radiation, at least for modest values of BO. Since the plot of the
Doppler-shifted real frequency has a similar form to the growth rate
curve, it is not shown in Fig. 6 (see Fig. 5).

We now present an example that illustrates cyclotron maser
stability properties for higher magnetic harmonic numbers (s>2).

Shown in Fig. 7 are plots of the normalized growth rate wai/wc
versus RO/RC obtained from Eq. (48) (TE mode) for (a) s=2 and

(b) s=3, and parameters otherwise identical to Fig. 5. As evident
from Fig. 7(a), the maximum growth rate for s=2 occurs for RO/RC=O'78
when n=1, for RO/RC=O.44 when n=2, and for RO/RC=0.3 when n=3. These

values of RO/RC correspond to RO/RC=a21/ [see Eq. (53)]. 1In Fig.

“on
7(b) (s=3), the maximum growth rate for n=2 and n=3 also occur at
RO/RC=O'6 and RO/RC=O.41, respectively. However, for s=3 and n=1,
the growth rate assumes a maximum value for RO/RQ=O'69’ since Gg97%;

[see Fig. 7(b)]. Evidently, the value of RO/RC=o¢sl/aOn plays a very

important role in determining optimum system parameters for intense

microwave generation by the cyclotron maser instability.
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Of considerable experimental interest is the stability behavior
for specified n and several values of s. Typical results are shown
in Fig. 8 where (a) the normalized maximum growth rate (wai/wc)m
and (b) the normalized Doppler-shifted real frequency Re(be/wc)
are plotted versus 80 for n=2 and v=0.001. 1In Fig. 8, we assume 8b=
50/1.4, and the solid and dashed curves represent the TE and TM
modes, respectively. The range of BO is limited to 0.158050.5
since this stability analysis is valid only when (v/yo)(c/Rcw82<<Bé<<l
[see Eqs. (33) and (40)]. 1In Fig. 8(b), the real frequency for the
s=1 TE mode is related only for the range of 80 corresponding to
instability (wi>0). For the TE mode perturbation, maximum growth
occurs at RO/Rc=O'26 for s=1, at RO/RC=0.44 for s=2, and at RO/Rc=O'6
for s=3, whereas the TM mode perturbation with s=1 has a maximum
growth rate at RO/RC=O'33 [see also Figs. 5-7|. Note that the
s=1 TE mode perturbation is stabilized by decreasing 80 to 80=0.18,
which corresponds to 80=(4Q§2/3)1/
s=1 TE mode perturbation is the most unstable mode for small values
of 80 (8050.3, say). However, the growth rate of perturbations with
s>2 increases rapidly when the value of BO is increased. As an example,
for the (s,n)=(3,2) TE mode, the maximum growth rate increases by a
factor of six when BO is increased from 0.2 to 0.5. We therefore
conclude that for moderate or high values of BO, perturbations with
higher magnetic harmonic numbers (332) are also important unstable
modes for generating intense microwave radiation. We further note

from Fig. 8 that the growth rate of the TM mode is comparable with

that of the TE mode, when BO approaches unity.

4(sec Ref. 10). As shown in Fig. 8(a), the
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Finally, we conclude this section by pointing out two important
areas where the present analysis can be extended. First,
as previously shown for s=1, it may also be possible to demonstrate
analytically for higher magnetic harmonic numbers (s>2) that the region
of k-space corresponding to instability is very narrow-band with kc=w8b.
Second, the present stability analysis can be extended in a relatively
straightforward manner to magnetic harmonic numbers s>4, and also to

higher values of BO (80+1).




VI. CONCLUSIONS

In this paper, we have examined the excitation of electromagnetic
waveguide modes by the cyclotron maser instability for magnetic harmonic
number s>1. The analysis was carried out for a hollow electron

beam propagating parallel to a uniform magnetic field B é , assuming

0%z

that the beam is very tenuous [Eq. (1)]. 1In Sec. II, equilibrium
properties were calculated for the choice of electron distribution
function in which all electrons have the same value of canonical angular
momentum (Po) and same value of energy (yomcz) in a frame of reference
moving with axial velocity Bbc [Eq. (5)]. A formal stability analysis
for azimuthally symmetric electromagnetic perturbation was carried out
in Sec. III. Equations (38) and (39), when combined with Eqs. (16),

(22), (23), and (24), constitute one of the main results of this

paper and can be used to investigate stability properties for a broad

« ¥
v/
range of system parameters. In Sec. IV, a detailed énalytic investigation

of the cyclotron maser instability was carried out for TE and TM
waveguide modes, assuming Béf(l—llyg)<<l. The value of the geometric
parameter RO/Rc corresponding to maximum growth rate was determined,
and a detailed numerical analysis of the dispersion relation was
presented in Sec. V. One of the principal conclusions of this study
is that for moderate or high value of BO (6010.3, say) magnetic
harmonic perturbations with s>2 have growth rates comparable with the

fundamental (s=1) mode. Moreover, the growth rate of perturbations

with s>2 increases rapidly when the value of 80 is increased.

Finally, we emphasize that Eq. (53) together with Eq. (30),
can be used to calculate conditions for maximum microwave generation

by the cyclotron maser instability. By selecting the value of
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the applied magnetic field according to Eq. (30), and choosing RO/RC=
"q1/“0n’ the TE mode growth rate can be maximized for magnetic harmonic
. number s, thereby optimizing the microwave power output for radiation

with frequency w=swcyb.
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FIGURE CAPTIONS

Equilibrium configuration and coordinate system.
Electron density profile [Eq. (13)].
The straight lines w=kvgsmc/yband m=kc/8b intersect at
(w ,k )=(sw Yo SW yb/c). For the TE mode, the curve

2 2,p2y1/2 passes through (w ,k ) provided

“on = /Rc)
a. ¢/R =sw _. For the TM mode, the curve w=(k 02+62 2/112)1/2
On c c On c

w—(k c +

passes through (mo.ko) provided Bonc/RC=SwC.
Electron orbit in a plane perpendicular to the z-axis.

Plots of (a) normalized TE mode growth rate wai/wc,

and (b) normalized Doppler shifted real frequency Re(bel/wc)=

[yb(wr—kvb)—mc]/wc versus RO/RC [Eq. (48)] for s=1, v=0.001,
80=0.4. Bb=0.286 and several values of n.

Plots of normalized TM mode growth rate wai/wc versus RO/Rc
[Eq. (51)] for parameters identical to Fig. 5.

Plots of normalized TE mode growth rate ybwi/wc versus RO/RC
[Eq. (48)] for (a) s=2, and (b) s=3, and parameters
otherwise identical to Fig. 5.

Plots of (a) normalized maximum growth rate (me /w )

and (b) normalized Doppler shifted real frequency Re(ybﬂ/mc)
versus BO’ for n=2, v=0.001, Bb=80/1.4 and several values of

s. The solid and broken curves correspond to the TE and TM

modes, respectively.
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